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An Incompressible ALE Method for
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An ALE finite element method was developed to investigate fluid-structure
interaction. The write-up contains information about the method, the problem
formulation, and some results from example test problems.

1 Introduction

Multi-disciplinary analysis is becoming more and more important to tackle
todays complex engineering problems. Therefore, computational tools must be able
to handle the complex multi-physics requirements of these problems. A computer
code may need to handle the physics associated with fluid dynamics, structural
mechanics, heat transfer, chemistry, electro-magnetics, or a variety of other
disciplines–all coupled in a highly non-linear system. The objective of this project
was to couple an incompressible fluid dynamics package to a solid mechanics code.
The code uses finite-element methods and is useful for three-dimensional transient
problems with fluid-structure interaction. The code is designed for efficient
performance on large multi-processor machines.

2 Fluid Methodology

The main code-development effort associated with this project involved
modification to the incompressible flow package. The code was originally developed
in an Eulerian reference frame. To couple the fluid to the solid motion, the flow
solver needed to handle moving geometries. Therefore, the fluid equations were
reformulated to account for grid motion using an ALE formulation.

2.1 The Arbitrary Lagrangian/Eulerian Method

Several numerical methods are available for fluid flow problems. Based on the
arrangement of the computational mesh, these methods can be grouped into the
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Lagrange method, the Euler method, or the arbitrary Lagrangian Eulerian (ALE)
method. Each of these methods has advantages and disadvantages in solving flow
problems with moving boundaries.

In the Lagrangian description, the mesh moves with the fluid motion. Thus,
moving boundaries are easily expressed. This is the technique typically used in
structural mechanics codes. However, for fluid problems, the computation can easily
encounter grid tangling caused by large boundary motions or complex motion of the
flow-field.

The Eulerian method employs a mesh which is fixed in space. Here the fluid is
allowed to flow through the mesh. This is the usual technique used for fluids
problems. Grid tangling is not an issue for a fixed grid and complex fluid motions
can be studied. However, without special treatment, the conservation equations are
not exactly satisfied at moving boundaries.

As its name implies, the ALE method is a hybrid of the Lagrangian and
Eulerian methods. In the ALE method, the mesh is arranged independent of the
fluid motion. The grid can be moved to follow boundary motion, resolve complex
flow features, and prevent the grid from tangling. Due to its general applicability,
the ALE method was chosen for use in our current code.

From a mathematical point of view, the three methods differ in the reference
frame in which the derivatives are expressed. This boils down to how the material
derivative is evaluated. A nice discussion of each of these reference frames is
presented by Uchiyama [1]. The transport of a generic variable (φ) in one-dimension
will be used to help describe the difference in the three approaches. In the following
equations, X denotes the material coordinate system, x denotes the spatial
coordinate system, and χ denotes the referential coordinate system:

Lagrangian: Material Reference Frame

∂φ(X, t)

∂t

∣∣∣∣∣
X

= f (1)

Here the derivatives express the change in the transport variable as it moves with
the material.

Eulerian: Spatial Reference Frame

∂φ(x, t)

∂t

∣∣∣∣∣
x

+ u
∂φ

∂x
= f (2)

Here the derivatives express the change in the transport variable at a point fixed in
space. The advective derivative accounts for the material flowing through the fixed
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reference frame where the material velocity is given as

u =
∂x

∂t

∣∣∣∣∣
X

The advective term is non-linear and therefore requires special consideration when
solving.

ALE: Referential Reference Frame

∂φ(χ, t)

∂t

∣∣∣∣∣
χ

+ (u− û)
∂φ

∂x
= f (3)

Here the derivatives express the change in the transport variable at a point moving
with the reference frame. The advective derivative not only accounts for the motion
of the material, but also the motion of the reference frame, given by

û =
∂x

∂t

∣∣∣∣∣
χ

Eqn. 3 can be solved directly or the convective term can be split out as a second
step.

∂φ(x, t)

∂t

∣∣∣∣∣
x

+ u
∂φ

∂x
= f

∂φ(χ, t)

∂t

∣∣∣∣∣
χ

+ (−û)∂φ
∂x

= 0

(4)

This method is common in hydrocodes as discussed in Benson [2]. Both methods
have been implemented for this study. Part of this project is to compare the results
obtained from each method. Eqn. 3 will be referred to as Advection Option #1 and
Eqn. 4 will be called Advection Option #2.

2.2 The Incompressible Flow Equations

For the purposes of this paper, an incompressible fluid will be defined as one
where the density is constant in both space and time. The motion of an
incompressible viscous fluid is governed by a set of partial differential equations that
arises from the laws of conservation for a physical system. The physical laws of
interest are the conservation of mass (continuity) and the conservation of
momentum (Newton’s second law). Together, these coupled equations are known as
the Incompressible Navier-Stokes equations. Their derivation can be found in any
standard text on fluid mechanics. The mass and momentum equations can be
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expressed respectively in differential form as

∂uβ

∂xβ

= 0

∂uα

∂t
+ u∗β

∂uα

∂xβ

=
∂ταβ

∂xβ

+ gα

(5)

where the Greek subscripts α and β represent the three spatial coordinate directions,
and repeated indices imply summation. The pseudo-stress term is defined as

ταβ = −Pδαβ + (ν + νt)
∂uα

∂xβ

+ νt
∂uβ

∂xα

(6)

and the rest of the symbols are defined in the table at the end of the section. The
eddy-viscosity coefficient (νt) arises from an averaging or filtering technique and
allows for the inclusion of a turbulence model. The eddy viscosity equals zero if no
turbulence model is used.

These equations are usually formulated in an Eulerian reference frame. Here, the
equations are presented in the ALE formulation where the advective velocity (u∗)
accounts for the grid motion as described in Eqn. 3. The Incompressible
Navier-Stokes equations are complex, non-linear, and difficult to solve. Thus,
numerical techniques are required for all but the simplest problems.

Notation:
gα = body force (acceleration due to gravity, etc.)
ν = kinematic viscosity
νt = kinematic eddy viscosity
P = kinematic pressure = p

ρ

p = static pressure
ρ = fluid density
δαβ = Kronecker delta
t = time
uα = fluid velocity component
u∗ = advective velocity = (u− û)
û = velocity of the reference frame (grid)
xα = coordinate component

2.3 The Weak Form

Let us cast Eqn. 5 in a general form, represented by operator A, acting on
domain Ω, such that

A(u, P ) = 0 (7)

where u and P are the solution. Since u and P are not known, define discrete
functions ū and P̄ to approximate the solution functions. In general, the
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approximate solutions will not satisfy the original equation on a point-by-point
basis, resulting in some local error

ε = A(ū, P̄ ) 6= 0 (8)

at every point in the domain. This error can be minimized with the method of
weighted residuals (MWR). Apply the MWR to Eqn. 8 by multiplying by a
spatially varying weighting function v(Ω) and integrating over the domain∫

Ω

v(Ω)ε dΩ =

∫
Ω

v(Ω)A(ū, P̄ ) dΩ = 0 (9)

in order to satisfy the original equation in an average sense over the domain.

To apply the method of weighted residuals to the system of equations in Eqn. 5,
multiply each equation by a test function. Use w for the mass equation and v for
the momentum equation. Next integrate over Ω∫

w
∂ūβ

∂xβ

= 0∫
v
∂ūα

∂t
+

∫
vū∗β

∂ūα

∂xβ

−
∫
v
∂τ̄αβ

∂xβ

−
∫
vgα = 0

(10)

where dΩ is implied inside the integral. The stress term can be simplified, i.e. the
order of the derivatives can be reduced. First integrate by parts∫

v
∂τ̄αβ

∂xβ

= −
∫
τ̄αβ

∂v

∂xβ

+

∫
∂

∂xβ

(vτ̄αβ)

Next, the last term in the above equation can be simplified with the divergence
theorem ∫

∂

∂xβ

(vτ̄αβ) =

∮
vnβ τ̄αβ

where nβ is the β component of the surface outward unit normal vector, and
∮

indicates an integral over the surface boundary, ∂Ω. Combine the above to get the
final form of the momentum equation∫

v
∂ūα

∂t
+

∫
vū∗β

∂ūα

∂xβ

+

∫
τ̄αβ

∂v

∂xβ

−
∮
vnβ τ̄αβ −

∫
vgα = 0 (11)

Finally, substitute the stress term back in and obtain the final weak form of the
mass and momentum equations ∫

w
∂ūβ

∂xβ

= 0∫
v
∂ūα

∂t
+

∫
vū∗β

∂ūα

∂xβ

−
∫
P̄
∂v

∂xα

+∫ [
(ν + νt)

∂ūα

∂xβ

∂v

∂xβ

+ νt
∂ūβ

∂xα

∂v

∂xβ

]
−

∮
vnβ τ̄αβ −

∫
vgα = 0

(12)
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2.4 The Galerkin Form

As discussed in Section 2.3, numerical procedures for solving our equations
required the replacement of the unknown solution (u, P ) with an approximation
(ū, P̄ ) throughout the solution domain Ω. The approximate velocity and pressure
will now be defined using the Finite-Element Method. The first step to expand the
solution is to discretize the domain Ω, forming a union Ω̄ of elements Ωe

Ω ≈ Ω̄ =
⋃
e

Ωe

where the sum over e is taken over the total number of elements. We use this
discretization to define a set of locally defined basis functions which are pieced
together to form a global basis for the approximation subspace. These basis
functions will be described in more detail in Section 2.6. At this point we define the
approximate solution as a linear combination of the basis functions φ and ψ

uα(t, x, y, z) ≈ ūα(t, x, y, z) =
N∑

j=1

uj
α(t)φj(x, y, z)

P (t, x, y, z) ≈ P̄ (t, x, y, z) =
M∑

j=1

P j(t)ψj(x, y, z)

(13)

where the summations are performed over the total number of velocity nodes N and
the total number of pressure nodes M . We can now substitute into the continuity
and momentum equations [∫

w
∂φj

∂xβ

]
uj

β = 0[∫
vφj

]
∂uj

α

∂t
+

[
u∗kβ

∫
vφk

∂φj

∂xβ

]
uj

α −
[∫

ψj
∂v

∂xα

]
P j +[∫

(ν + νt)
∂φj

∂xβ

∂v

∂xβ

]
uj

α +

[∫
νt
∂φj

∂xα

∂v

∂xβ

]
uj

β −∮
vnβταβ −

∫
vgα = 0

(14)

where summation over j and k are implied and the integrals are now performed over
the discretized volume Ω̄. Recall that uj and P j are functions of time only and
therefore can be pulled out of the volume integrals. The time discretization of these
variables will be discussed later.

At this point we will focus on the weighting functions v and w which can be
chosen arbitrarily. Notice that the above system contains 3N velocity unknowns
and M pressure unknowns. In order to solve this system, there must be the same
number of equations as unknowns. We can obtain the necessary number of
equations by defining one weighting function per unknown. Remember that the
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weighting functions were included in the equations to reduce the effects of the error
over the area influenced by the weighting functions. Therefore, each weighting
function should be chosen to amplify the error over a limited subregion in the
vicinity of its corresponding unknown. The most common error distribution
principle used for finite elements is the Galerkin method. According to the Galerkin
method, the weighting functions are chosen to be the same as the basis functions
used to define the approximate solution. Applying this method to our equations,
with w = ψi and v = φi, yields [∫

ψi
∂φj

∂xβ

]
uj

β = 0[∫
φiφj

]
∂uj

α

∂t
+

[
u∗kβ

∫
φiφk

∂φj

∂xβ

]
uj

α −
[∫

ψj
∂φi

∂xα

]
P j +[∫

(ν + νt)
∂φj

∂xβ

∂φi

∂xβ

]
uj

α +

[∫
νt
∂φj

∂xα

∂φi

∂xβ

]
uj

β −∮
φinβταβ −

∫
φigα = 0

(15)

resulting in M continuity equations and N momentum vector equations.

2.5 Matrix Form

The system in Eqn. 15 represents a system of 3N +M ordinary differential
equations with the same number of unknown time-dependent functions. Each
bracketed term, [ ], can be expressed as a matrix, resulting in

Mu̇+ (K + N(u∗))u+ CP = F

CTu = 0
(16)

where the matrix entries are computed from integrals of the shape functions. The
definitions of each of these matrices are given below.

Mass

M =

 mij 0 0
0 mij 0
0 0 mij

 ,mij =

∫
φiφj (17)

Diffusion

K =

 kij(xx)
kij(xy)

kij(xz)

kij(yx)
kij(yy)

kij(yz)

kij(zx)
kij(zy)

kij(zz)

 ,
kij(αβ)

=

∫ (
δαβ (ν + νt)

∂φj

∂xγ

∂φi

∂xγ

+ νt
∂φj

∂xα

∂φi

∂xβ

) (18)
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Advection

N(u∗) =

 nij 0 0
0 nij 0
0 0 nij

 , nij = u∗kβ

∫
φiφk

∂φj

∂xβ

(19)

Gradient

C =

 cij(1)
cij(2)
cij(3)

 , cij(α)
= −

∫
ψj
∂φi

∂xα

(20)

Divergence

CT =
[
cji(1) cji(2) cji(3)

]
, cji(α)

= −
∫
ψi
∂φj

∂xα

(21)

Force Vector

F =

 fi(1)

fi(2)

fi(3)

 , fi(α)
=

∮
φinβταβ +

∫
φigα (22)

The above equations represent global finite-element matrices. However, their
form is identical to the element versions. These integrals can be computed
element-by-element and “assembled” to form the global system (see [3]).

2.6 Shape Functions

As discussed in Section 2.4, the approximate solution is expresses as a function
of a set of basis functions, a.k.a. shape functions. We can express an arbitrary
function, ϕ, as a linear combination of the shape functions

ϕ ≈
N∑

i=1

Niϕi (23)

where Ni is a globally defined shape function and the coefficients ϕi are the
unknown nodal values. It follows that for any node j

ϕj = ϕ(xj) =
N∑

i=1

Ni(xj)ϕi (24)

which requires that the shape functions must obey

Ni =

{
1 at node i = j

0 at node i 6= j
(25)
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This implies the following identities:

N∑
i=1

Ni = 1

N∑
i=1

Nixi = x

N∑
i=1

Niyi = y

(26)

These relations allow us to define our shape functions locally, element-by-element, in
terms of element shape functions N , which are zero outside the element considered.
The global functions are obtained by assuming Ni = Ni within each element.

The Q1Q0 element formulation was chosen for our study. This element is
discussed by Gresho, et.al. [4]. The velocity shape functions in terms of the
element’s parametric coordinates (s, t, u) are given as

N1(s, t, u) =1/8(1− s)(1− t)(1− u)

N2(s, t, u) =1/8(1 + s)(1− t)(1− u)

N3(s, t, u) =1/8(1 + s)(1 + t)(1− u)

N4(s, t, u) =1/8(1− s)(1 + t)(1− u)

N5(s, t, u) =1/8(1− s)(1− t)(1 + u)

N6(s, t, u) =1/8(1 + s)(1− t)(1 + u)

N7(s, t, u) =1/8(1 + s)(1 + t)(1 + u)

N8(s, t, u) =1/8(1− s)(1 + t)(1 + u)

(27)

and the pressure shape functions are

NP (s, t, u) = 1 (28)

This element is shown graphically in Figure 1.

2.7 Parametric Coordinate Transformations

The element shape functions given in Section 2.6 are given in the element’s
parametric coordinate system. However, the integrals making up the system
matrices must be evaluated using the global coordinate system. Therefore, a series
of transformations must be performed to evaluate the integrals. The global
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Figure 1: Node numbering of element in local coordinates.

coordinates can be expressed in terms of the parametric coordinates as

x(s, t, u) =
ne∑
i=1

Ni(s, t, u)xi

y(s, t, u) =
ne∑
i=1

Ni(s, t, u)yi

z(s, t, u) =
ne∑
i=1

Ni(s, t, u)zi

(29)

where
Ni(s, t, u) = Ni [x(s, t, u), y(s, t, u), z(s, t, u)]

Therefore, the derivatives of the shape functions can be expressed using the chain
rule as

∂Ni

∂s
=
∂Ni

∂x

∂x

∂s
+
∂Ni

∂y

∂y

∂s
+
∂Ni

∂z

∂z

∂s
∂Ni

∂t
=
∂Ni

∂x

∂x

∂t
+
∂Ni

∂y

∂y

∂t
+
∂Ni

∂z

∂z

∂t
∂Ni

∂u
=
∂Ni

∂x

∂x

∂u
+
∂Ni

∂y

∂y

∂u
+
∂Ni

∂z

∂z

∂u

(30)

or equivalently in matrix form as ∂Ni

∂s
∂Ni

∂t
∂Ni

∂u

 =

 ∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂u

∂y
∂u

∂z
∂u

 ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 = J

 ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 (31)

where J is the Jacobian matrix. The Jacobian matrix can be expressed as
derivatives of the element shape functions

Jαβ =
∂xα

∂sβ

=
ne∑
i=1

∂Ni(s, t, u)

∂sβ

xα,i (32)
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The shape function derivatives in terms of the global coordinate system can be
computed using the inverse of the Jacobian matrix ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 = J−1

 ∂Ni

∂s
∂Ni

∂t
∂Ni

∂u

 (33)

These values can then be used to evaluate the integrals in the matrix equations.
From Calculus we know that the determinant of the Jacobian matrix can be used to
transform an integral from one coordinate system to another using the relation

dΩ = dx dy dz = detJ ds dt du

Therefore, the matrix integrals can be evaluated with the transformation∫
Ωe

ϕdΩ =

∫
Ωe

ϕ(x, y, z) dx dy dz

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

ϕ(s, t, u) detJ ds dt du

(34)

These integrals are then evaluated using Gaussian quadrature as described by
Comini [3]. Typically eight quadrature points are used. Single-point integration is
also useful, but requires hour-glass stabilization as discussed in Goudreau and
Hallquist [5].

2.8 Time-stepping Algorithm

Eqn. 16 represents a system of ordinary differential equations which must be
solved in time. This presents a challenge, as this system is very difficult to solve
efficiently in its coupled form. Therefore, we use a segregated solve to obtain the
velocity and pressure solutions in separate steps. In particular, we use an implicit
projection method to discretize the ODEs. This procedure is described in Gresho,
et.al. [6]. The philosophy behind projection methods is to provide a way to decouple
the pressure and velocity fields to provide an efficient computational method to
solve transient incompressible flow problems.

First the momentum equation is discretized using a two-level split-theta
time-stepping scheme

[M + ∆tθKK + ∆tθNN(ũ∗)]
ũ

∆t
=

M
un

∆t
− (1− θK)Kun − (1− θN)N(u∗n)un + Fn −MML

−1CP n

(35)

This equation is solved for an intermediate velocity ũ which does not satisfy the
divergence-free condition in the continuity equation. The value of the θs can be
chosen to tailor your time-stepping scheme. Use θ = 0 for an explicit forward-Euler
scheme, θ = 1 for implicit backward-Euler, or θ = 1/2 for Crank-Nicholson. The
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right-hand-side of this equation is computed using the pressure from the previous
time-step and the non-linear advection term is computed using a linearized guess for
the new velocity

ũ∗ = un + (∆t)
∂un

∂t
+ · · ·

For all results presented here, a zeroth-order approximation is used such that

ũ∗ = un

After we implicitly move the material with the momentum equation, the discrete
pressure-Poisson equation (PPE) is solved to enforce the continuity equation.[

CTML
−1C− S

]
λ = CT ũ

∆t

= CTML
−1ML

ũ

∆t

(36)

where λ is a Lagrange multiplier used to update the pressure. ML is the lumped
mass matrix and S is a stabilization matrix used to remove spurious pressure
modes [7]. Note that multiplying the lumped mass matrix by its inverse on the
right-hand-side is done purely for computational reasons to enforce boundary
conditions. We end the step by computing the final values of the pressure and
velocity

λ = P n+1 − P n ⇒ P n+1 = λ+ P n

un+1 = ∆tML
−1

(
ML

ũ

∆t
−Cλ

)
(37)

3 Solid Methodology

The implicit structural mechanics algorithm for solid materials is based on an
updated Lagrangian formulation. Dynamic equilibrium is obtained by solving a set
of non-linear equations using the state and configuration at the end of the
time-step. Non-linearities arise due to material response and configuration changes.
The method handles these non-linearities using a Newton-Raphson iteration to
obtain the final configuration.

The local dynamic equilibrium relation is given by

ρüα =
∂σαβ

∂xβ

+ ρbα (38)

where σ is the stress tensor, b is a body force vector per unit mass, ρ is the density,
and ü is the second time derivative of the nodal displacement vector. The principle
of virtual work is used to obtain a weak form of the equation and the finite-element
method is used to discretize and solve the equation. This analysis can be found in
the report by Becker [8] and will not be repeated here as its derivation was not the
focus of the current project.
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Figure 2: Fluid and solid are coupled through the boundary conditions.

4 Coupling the Fluid & Solid Codes

The objective of this project was to couple an incompressible fluid dynamics
package to an implicit structural mechanics code. The idea was to preserve the
capabilities of each individual package while allowing them to interact. Due to the
transient nature of the solution procedure, a loosely-coupled approach can be
employed. This is sometimes referred to as an operator-split approach. In this
method each set of equations is solved separately at each time-step. It is assumed
that the non-linearity between the fluid and solid system is minor for a single
time-step and therefore no iteration between the fluid and solid solve is performed.

The fluid and solid material only interact at their interface. Thus, the
fluid-structure coupling occurs through the boundary conditions. This is seen in
Figure 2 which shows the interface between the fluid and the solid material. The
interface between the fluid and solid will be called ∂Ωint. Currently the nodal
positions of the fluid and solid interface nodes must coincide, i.e. the fluid and solid
share nodes at the interface. At the interface the fluid material applies a force
boundary condition to the solid

n · σ = tfluid on ∂Ωint

where tfluid is the applied surface traction force per unit area. This is a Neumann
(Natural) boundary condition on the solid. The traction is computed and integrated
during the fluid time-step using the pressure and shear forces within the fluid. This
applied force will prescribe the motion of the solid system. The velocity of the solid
at the fluid-structure interface will then be used as an essential (Dirichlet) boundary
condition on the fluid

u = Vsolid on ∂Ωint

where u is the fluid velocity vector and Vsolid is the calculated solid velocity at the
interface.

The steps involved with each time-cycle are outlined below:
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1. Solid Solution

• Solve for new solid configuration (using force obtained during previous
fluid cycle)

• Solve for velocity at the interface

2. Mesh Relaxation

• Move fluid grid to account for new solid configuration

• Compute grid velocity based on change in grid position

• Advect fluid variables (Advection Option #2 Only)

3. Fluid Solution

• Solve for fluid velocity and pressure

• Compute force acting on interface

4. Complete the Cycle

• Post-Process

• Increment Time

• Return To Step 1

5 Results

Two test cases were run for this project. The first test looked at flow around a
rigid sphere with a moving grid. This test was designed to validate the grid motion
capability of the incompressible flow model. Therefore, the solid mechanics code
was not utilized for this test. The second test also looked at flow around a moving
sphere, but the sphere was solid and it’s motion was computed by the solid
mechanics code.

5.1 Test Case #1: Flow Around a Sphere

Test problem #1 looked at flow around a three-dimensional circular sphere. In
this case the sphere was rigid and the flow conditions were

D = 1 Diameter of Sphere
Uinf = 1 Freestream Velocity
ν = 0.1 Kinematic Viscosity
⇒ Re = 10 Reynolds Number

At a Reynolds Number of 10, the flow has not yet separated but the streamlines are
asymmetric (see Van Dyke [9]). In order to test the grid motion, this test was run
on a fixed grid with a uniform freestream velocity and on a moving grid where the
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Figure 3: Color contours of pressure overlaid with velocity vectors for fixed grid.

freestream fluid was at rest and the sphere was translated. Both advection options
were tested using the moving grid. If the grid motion is working correctly, all three
cases should result in the same answer.

Four levels of grid resolution were used for each case to study convergence. The
number of elements for each grid were 1152, 9216, 31104, and 73728. This
corresponds to the coarsest grid times 13 ,23, 33, and 43, where the power of 3 is due
to refinement in the 3 spatial directions. These grids will be referred to as grids 1, 2,
3, and 4 respectively. All cases ran for 2500 cycles with an initial time-step of
1E-10, which grew exponentially to 1E-2.

These are three-dimensional transient simulation. As such, they required a fairly
large amount of computational resources. Grid 4 was run on 24 (fast) Linux
processors. It required a little over 4 hours of wall-clock time to perform the 2500
steps. The smaller grids required substantially smaller compute times.

We first look at the fixed grid simulation. Figure 3 shows the final flow-field in
the simulation for grid 3. Velocity vectors are shown on top of pressure contours. As
can be seen in the figure, a large boundary layer has developed around the sphere.
A large stagnant flow region is present behind the sphere, but no separation has
occurred. This agrees well with the qualitative data found in Van Dyke [9].

Figure 4 plots the time-history of the drag acting on the sphere. For all grids the
drag starts out at a very large value then gets smaller and converges to a
“steady-state” value. Figure 5 plots the final drag (cycle 2500) for each grid to see
the spatial grid convergence. The plot shows that the change in drag is reduced at
every level of grid refinement indicating grid convergence.
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Figure 4: Time-history plot of drag for fixed grid simulation.
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Figure 5: Convergence plot of drag for fixed grid simulation.
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Figure 6: Color contours of pressure overlaid with velocity vectors for advection option
#1.

Next we look at the moving grid simulation using Advection Option #1 (i.e.
Eqn. 3). Figure 6 shows the final flow-field in the simulation for grid 3. Velocity
vectors are shown on top of pressure contours. Figure 7 shows the same plot, but
the velocity vectors are relative to the sphere motion (u− û). This lets us see that
Option #1 gives similar qualitative results as the fixed grid solution.

Figure 8 plots the time-history of the drag and Figure 9 shows the convergence
history of the drag. Here we see some strange behavior in the results for grid 4. It is
assumed that this was caused by a time-step that was too large for this grid
refinement. A drawback to the projection algorithm used in the flow code is that
although it is implicit and is not constrained by a Courant time-step limit,
time-steps many times larger than the Courant limit can still cause instabilities due
to poor linearization of the advective operator. Many time-steps were experimented
with, and although it did look like smaller time-steps would produce better results,
computational expense prohibited their use. More study is still required to fully
understand this phenomena.

Now we look at the moving grid simulation using Advection Option #2 (i.e.
Eqn. 4). Figure 10 shows the final flow-field in the simulation for grid 3 with
velocity vectors on top of pressure contours. Figure 11 shows the same plot, but
with relative velocity vectors. These figures show that this method produces a very
different result than Option #1 or the fixed grid simulation. This is not unexpected.
These simulations were performed with a time-step that was way too big for this
method. Option #2 uses an explicit scheme to advect the flow quantities, but the
time-step used was much larger than the Courant limit. Although the code did not
crash due to instabilities, the values coming out of the advection routines cannot be
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Figure 7: Color contours of pressure overlaid with relative velocity vectors for ad-
vection option #1.
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Figure 8: Time-history plot of drag for advection option #1 simulation.
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Figure 9: Convergence plot of drag for advection option #1 simulation.

Figure 10: Color contours of pressure overlaid with velocity vectors for advection
option #2.
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Figure 11: Color contours of pressure overlaid with relative velocity vectors for
advection option #2.

expected to be realistic. Thus, these calculations should be rerun using a smaller
time-step. This time-step restriction is the primary reason why Option #1 was
implemented and why this was chosen as the topic of this project. The drag plots
are presented in Figure 12 and Figure 13 for completeness.

Figure 14 summarizes this test case by plotting the drag time-history curves for
grid 3 for the three cases. As expected from the earlier discussion, the drag value
obtained in the fixed grid case agrees fairly well with the results from Advection
Option #1. However, Advection Option #2 gives a much lower value for the drag.

5.2 Test Case #2: Buoyant Solid Sphere

The second test problem was designed to test the fluid-solid coupling in the
code. It used Advection Option #1 for the grid motion. The test consisted of a
hollow sphere made of a solid material immersed in an incompressible fluid. A
gravitational body force was applied to the system, resulting in motion of the ball.
The solid used a Gruneisen equation of state and a constitutive model with a

Dunn, T.A.



Proceedings from the NECDC 2004

0 5 10 15 20
Time

1400

1500

1600

1700

1800

1900

2000

D
ra

g

Grid #1
Grid #2
Grid #3
Grid #4

Figure 12: Time-history plot of drag for advection option #2 simulation.
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Figure 13: Convergence plot of drag for advection option #2 simulation.
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Figure 14: Time-history plot of drag for grid #3 for all cases.
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Figure 15: Initial Configuration and Hydrostatic Pressure

constant shear modulus. The following parameters were used:

Do = 1 Outer Diameter of Sphere
Di = 0.8 Inner Diameter of Sphere
Vinit = −0.1 Initial Velocity of Sphere
Uinf = 0 Initial Fluid Velocity
ν = 0.1 Kinematic Viscosity
ρf = 1000 Fluid Density
ρs = 1000 Solid Density
g = −10 Gravitational Acceleration
γ0 = 2 Gruneisen Gamma
c = 1E6 Solid Speed of Sound
cmu = 1E15 Shear Modulus of Solid

Note that this corresponds to a very stiff solid material and very little deformation
should occur. Also notice that the fluid density is the same as the density of the
solid. Therefore, since the ball is hollow, it should float. Since the sphere is initially
given a small velocity downward, the buoyant forces will overtake the initial motion
and the ball will change direction as the hydrostatic pressure pushes it upward.

The grid used in this simulation contained 768 solid elements and 9600 fluid
elements. Only one grid was used due to the very large computational expense
required to solve the problem. This problem ran 2500 time-steps and required
approximately 30 seconds per cycle. Thus, approximately 20 hours of computer
time were required. Over 90% of the time was spent computing the solid material.

Figure 15 shows the initial configuration of the problem. The solid white line in
the middle represents the fluid-solid material boundary. The color contours
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Figure 16: Initial Configuration and Flow Around Solid Ball

represent pressure. Notice that the fluid has established the hydrostatic pressure
throughout the solution. Figure 16 shows the same configuration, but zoomed in to
view the ball. Fluid velocity vectors are also added to the plot. Notice that the
velocity vectors are initially pointing downward, following the motion of the ball.
Figure 17 shows the final configuration of the simulation. At this point the ball has
an upward velocity and has moved a distance a little more than the ball diameter.
The motion of the solid has started to cause the fluid to recirculate. The fluid near
the solid boundary is moving upward with the ball. Away from the sphere, the fluid
is rushing downward to fill in the gap left by the moving solid.

The next plots provide a time-history of the motion of the ball. Figure 18 shows
the vertical velocity of the sphere verses time. The sphere initially has a negative
velocity, but as the hydrostatic pressure in the fluid pushes the ball upward the
velocity increases. Towards the end of the simulation, drag begins to decelerate the
sphere. It is unclear why the ball overshoots its terminal velocity. This will need to
be investigated with a grid convergence study. Figure 19 shows the ball’s position
verses time (Figure 20 provides a zoomed in look at the start-up). As discussed for
the velocity plot, the ball initially moves downward, then changes direction and
moves upward.

Without a formal validation and grid convergence study no conclusions can be
drawn to the accuracy of the method. However, the simulation does provide results
that are qualitatively similar to what would be expected.
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Figure 17: Final Configuration and Flow Around Solid Ball
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Figure 18: Vertical Velocity of Solid Ball
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Figure 19: Vertical Position of Solid Ball
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Figure 20: Vertical Position of Solid Ball
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6 Conclusions

An incompressible flow code was coupled to an implicit solids code to investigate
fluid-structure interaction. In order to do this, the fluids code was modified to allow
grid motion using the ALE methodology. Two test cases were run: one to validate
the grid motion capability in the fluid code and a second to check the fluid-structure
coupling. A few conclusions are summarized here.

• Advection Option #1 was able to reasonably reproduce a fixed grid solution
using a moving grid. Both agreed qualitatively with flow-field visualization
experiments.

• Advection Option #2 did not predict the correct flow. It is assumed that this
was caused by time-steps which were too large. This should be investigated
more.

• The implicit projection method used for the fluid equations requires
“reasonably” sized time-steps for accurate solutions. This could have
influenced the convergence study results.

• Test problem 1 should be investigated further with an analysis of
time-discretization effects.

• The code was able to provide some insight into the fluid-structure interaction
for a buoyant sphere.

• A more detailed grid-resolution study is required for test problem 2.

The following items may be considered for future projects to improve the
performance of the code:

• Non-linear iteration may be required for convergence between the fluid and
solid.

• Strong coupling may be required–solve both fluid and solid in the same matrix
solution.

• Iteration within the incompressible flow step to better address the non-linear
advective term could improve the projection algorithm.

This is an ongoing project. There is still plenty of work to be done.
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